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COMPUTER APPROXIMATIONS FOR THE CONAL GREEN'S FUNCTION
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I. INTRODUCTION

This note provides expressions necessary for a restricted analysis of the
coaxial cone diode problem. The development neglects retardation in the fields but
employs correct relativistic equations for the particle motion. One is justified
in doing this if one assumes the region of interest is small enough that signals
propagate essentially instantaneously throughout. The reason for making this
assumption is simply that the more realistic problem is too expensive of computer
memory. The analysis neglects radiation as well. We can then use the two-
dimensional Green's function derived previously'l . In Section II we derive the
interparticle forces for rings of charge in the conical diode. Section III is
devoted to approximations for the formal expressions. The final section deals

with problems of computer simulation of the time dependent flow in the diode region.

I1. INTERPARTICIE FORCES IN A COAXTAL CONE DIODE

The potential at r,8 and any ¢ due to a ring of charge lying in a plane
perpendicular to the axis cos § = xl,at r = r’ and § = 6’ is given by(l)
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For ¢ > 0’, make the exchange § ¢ §’ in the above formula. We have written

?T(cos 8) for the conal harmonic P_%+1T(cos p) . The conal boundaries § = @ and
8 = by are defined in figure 1,

This is to be interpreted as a Coulomb Green's function; that is, its arguments

dre the simultaneous coordinates of the source and observer.

The charge density for a ring of charge is
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where @ 1is chosen so that
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The current density is, therefore
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Although we must forsake at this stage, a completely consistent relativistic

treatment we will strive to retain in all field expressions all terms of order

(v/c)® or less. This is accomplished by first solving for ¢ im the Coulomb gauge

g = ~bmp
to get
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. from which we calculate the electric field correct to zeroth order in v/c
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;:) The time derivative of the electric field is, therefore,
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correct to first order in v/c if we neglect accelerations and hence radiation .
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Now, when calculating the vector potential we include the displacement current,

(5), since the convection current is itself of order v/c. Thus,

Y
2_10 (3, 1 28
A=z S (pv * T at) vdr (6)
or

K(l’,e) = '32_431 V(r,eil‘i,ei)

i
lmcl SS{LV v(r’,p’ 5T 58 )_J V(r,8;r’,6 )} on(r’)2dr’ sin p’dp’

or, integratlng the last term by parts, we have
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since V = 0 on the boundaries, 1In Appendix A we check this expression for the

free space Green's function., The electric field, correct to v2/e¢® is therefore
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Note that the expressioms for E'and B¢ require an additional integration
to be performed if we are to consistently keep all terms to order v?/c® in the
force expression. This will be extremely time consuming. It also requires
evaluating and storing expressions for V(r,g;r’,s’) containing the conal Ffunctions
through second degree., One may be justified in ignoring these terms initially in
the interest of expediency if it can be argued that they are important only imsofar
as large gradients in the fields devel&p in the course of the problem. Eventually
one will need to deal with this problem and perhaps its solution is to write
V and ¥V in their power series form and integrate this expréssion by hand. The
result could then be evaluated and stored as one has already stored V and W to

form the other portions of the force expressions.

The correct relativistic expressions for the particle motion can be used.
This entails no extra storage since the velocities are saved for use in the fieid

generation,.

In the following section we give the approximations needed to form the fields
from the conal harmonics assuming that either the integrations over the volume of
the diode have been done or that they have been ignored. One needs only the

expansions for harmonics of degree zero and one in this case,

ITI. APPROXIMATIONS FOR THE CONAL FUNCTIONS

The expression (1) requires a further integration over the degree, 7.
This must be accomplished on the computer, to give a téble of values for discrete
choices of r and §. It will be done more accurately if we form the expressioné
for the forces before the integrations on 1 are performed since otherwise one
would have to rely on numerical differentiation after this last iﬁtegration is

performed.

In general(z)
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Now
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and since m=0, we have
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Thus we need power series approximations and asymptotic expansions for both
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-g‘l'i
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where K is the complete elliptic integral of the first kind
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where, again, k = sin g .
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where E(k) is the complete elliptic integral of the second kind. Again for
Pi%+iT(-cos g) replace g with m-g.

For 7 < 2 < 15 (=w)
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which is good for five significant figures.
A(0) 1y (16) +) A% ()T, (r0) 7 ¥ + o(xP)
k=0

1
P_;_B_FiT(cos 6)

Al’
I;(T8) {A{T-I-——L" +.]_'_(A:3-§A')+“"“—“8 Al +,,,}+
T ,TB T

B -2 562 -3
y o,
+I(T9) A +— Al - A 4,
{ 1-2 -2 ,T4-e -3 }
where
r_ p
A:L B ‘\/ sinp
! o2 -
Ao 5 s:LnB ( 1 - fcotp)
- 15 2 2 + - =2
'l 1289 \/sine( f=cot=g + 6pcotp - 86 + 9)

Al = Toones Jsige(-lo_’:eacotae - 969%0::9 - 456%cot®p + h5gcotp - 24 + 105)

_ 5 Q'"_44_ 40420 . 2oL _ BneBa o OEO AR D
A:E‘“E‘;@e_"‘ fsine( 1059%cot®g - 138p*cos“p ~ 32g 2108 cot®g ~ 252¢%cot=p

- 212p%o0tp - 126pcots - 21082 + 693)

which is good for four significant figures.




Then

The polynomial approximations for the modified Bessel functions are as follows‘®’.

Let T¢

x/3.75.
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When the force terms are formed from the Green's function derivatives of the Bessel

functions will be created. The following two relations will be required:(s)
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The factors are no problem since for large T,

(cosh m7)~% + 0 and will help the accuracy of the asymptotic expansions.

7

2n
Also cosh(mr) = E; g;)|
= )

is accurate to 0.1% for O < v = 2.

IV. COMPUTER SIMULATION OF THE TIME DEPENDENT PROBLEM

Generally in problems of this type we must resort to inexact methods of dealing
with the interparticle interactions simply because to take account explicitly of all
the forces requires inordinate computation times. Furthermore, in this case we must
necessarily take this course because we have no analytic expression for the interparticle
force after the machine performs the integration with respect to the degree, 7, of the

conal functions.

A method for dealing with large numbers of macroparticles (typically, several
thousand) which we have found to be a useful compromise between speed and accuracy is the
so-called "particle~in-cell” method (PIC)¢9) . Imagine that the two-dimensional region
between the cones in the plane ¢=constant is divided into cells by the intersection of
circles of constant r and lines of constant f. (See figure 2) Initially the fields
due to the generator pulse are the only ones present and these are calculated for only
those points representing mesh points (orthogonal cell intersections). Eventually,
however, the fields due to space charge must be added to the external fields. This is

accomplished in the following way. One will have already created a table of values of




interparticle forces where the table entries are labeled according to the position

(cell coordinates) of a particle and the position of an observer, a total of four
coordinates.  If Nm is the total number of mesh points this table will have

Nm(Nm-l) entires. Nm is typically about 100. Now as one iterates the program in time
the number of particles in each cell is ascertained. The force in the * and a

directions at any given mesh point produced by the charge in any cell is simply the
product of the number of particles in the cell and the appropriate tabulated values
previously computed., The total force at any mesh point is the vector sum of the
contributions from all cells. The actual force used to update the position and velocity
of any given particle is gotten by interpolation with respect to the particles position
within the cell. Because the force is, in part, velocity dependent one must also monitor
the velocities of the particles in each cell at the time the particles are being counted,
The particles enter the problem by appearing at the angle gz + 8p where gy defines

the cathode and 69 << Ap where Ap is the angular spread delimiting a cell. They are
spread randomly in r out to some RO which is a parameter to be varied and determines

the initial emission surface. If we assume that at time t = O+ the external field has
been established then particles will be produced at the cathode surface with random small
velocities and will be accelerated away. If the particles are fed in rapidly enough
then they will not only be drawn away by the external field but will be slowed down or
driven back by the charge previously injected, those with sufficient initial velocity to
get by the "virtual cathode" plane traveling on to the anode. Some particles will return
the cathode and will be assumed lost. Those that reach the anode will be thereafter
ignored. One can envision thereby a situation where after a time there is no net gain

or loss of particles in the system and lengthly flow studies can be made by "reusing"

the particles which encounter cathode or anode after injection,

The cell area should probably be kept constant over the whole diode region.
This is accomplished by making the spacing in angle, Ap, constant and varying r

according to the following
T o O6FAB

S S rdrdg = A
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where A is the cell size desired. Thus

he =
n+l Ap n
where A, Ap and r, are chosen upon consideration of emission radius, tube geometry and

feasible number of cells.

To same time initially integration in time should probably be done via simple
Euler integration. If this proves unstable one would be forced to try other techniques.
Storage limitations fast become a problem in using elaborate predictor-corrector or

Runge=-Kutta schemes,

That storage is a problem can be appreciated by considering the following typical

case:
Number of cells 100
Number of mesh peints : 10,000
Number of particles ' 2,500.

Decimal locations required:

V(rgs o3 rj,ej) 10,000
av/3e, (r.,6,; rj,ej) 10,000
av/aej(ri,ei; rj,ej) 10,000
Particle coordinates ri,gi, Vir,Vi8 1G,000.

Additional "gaved" coordinates for integration routines:
g

Euler 10,000
Two-point predictor-corrector 20,000
Four-point predictor-corrector 40,000,
"Left-hand side'of equations of motion 10,000
Basic Fortran Code > = 10,000.

It appears that one needs at least a 128K machine (e.g, IBM 360-65 or greater)

for this problem.
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A matter of practical interest in the coding of this problem is the question of
what to do about the cathode-anode short at the common vertex of the cones. One
possible way of dealing with it is to imagine a resistor connecting the electrodes at
that point and superimpose the fields genmerated by current flow in this junction.

This bias current could be a parameter of the problem.

With regard to output ome is interested in observing the flow as a whole
("integration by eye") so plots of particle positionms together with electrode
boundaries for a sequence of times is desirable. This leads one directly to
contemplate the generation of movies of this kind of output when the codes are

working,

The equipotentials at any one time for many times are also of interest as are
the trajectories of the particles starting at the same time for different starting
places and at the same place {approximately) for different starting times.
Gross tube parameters such as impedance versus time, total current vs time and voltage

across the tube vs time can be compared directly with experiment.

In the future one foresees the desirability of studying the effect of ions
in the diode region. These will be simply heavier and perhaps multiply charged
rings which are situated in the tube before the rise of voltage from the generator
{bad vacuum effect) and/or are injected into the region as the first electron

rings strike the anode surface,

Another future project might be some attempt to take account of retardation,
finite propagation times and radiation although this appears far from feasible now.
This full relativistic treatment would provide direct comparison with the experimental
problem. Ope would have to generate the correct TEM modes on the generator line and
match them to the diode load. The current in the line would have to be compared with
the tube current including the displacement current using the expression for the tube
capacity. Perhaps such sophistication may be possible for other geometries for which

the Green's function is given as an analytic function instead of as a table of values.
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APPENDIX A

In Section IT we derived an expression for the wector potential which is correct
to order v/c. We show here that this is correct for the free space Green's functiom

for which the integration can be done explicitly.

First we derive the vector potential for two free particles in Coulomb-gauge

correct to order v/c.(this gives the correct field components to order v°/cZ).

With no assumptions at all we write

nd R
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Now, to order v/c
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1f we retain terms to order v/c we have
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To order v¥/¢® we have, by the same arguments
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R| 2c®  a® g
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Now to write these in Coulomb gauge we transform

and

where

ot 2¢ If{’l
so in Coulomb gauge -
¢’ = S
|
and
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Now let us derive A from equation (7) of Section II where we use the free~space

Green's function for V:
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The integral is just 2m

80

N

T - T

1

=

r""r‘l'

R

e vl ?-?1 o ?1 o
T 1+ o +§E(V1'v1) 3 a7 ¢ T 9. " 5
It -~ 7] It - 7| |t -+, | ¢

_’

-5 B
which agrees with the above with r - r; =R,
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